"Wer Ordnung hält, ist nur zu faul zum Suchen..."

Wie schnell findet Facebook einen von 2,5 Milliarden Benutzern?

Klaus Kusche Frühjahr 2019

Suchen? Computer rechnen doch!

Mehr <u>rechnen</u> oder mehr <u>suchen???</u>

- Wettervorhersage
- Google, Facebook, YouTube, Wikipedia, ...
- Telefon-Auskunft, Zug-Auskunft, ...
- Online-Shop
- Rechtschreibprüfung
- Robotersteuerung
- Bank, Finanzamt, Krankenkasse, ...

Suchen? Computer rechnen doch!

Mehr rechnen oder mehr suchen???

- Wettervorhersage
- Google, Facebook, YouTube, Wikipedia, ...
- Telefon-Auskunft, Zug-Auskunft, ...
- Online-Shop
- Rechtschreibprüfung
- Robotersteuerung
- Bank, Finanzamt, Krankenkasse, ...

Was ist daran schwer?

"Einfach <u>alle der Reihe nach</u> durchsuchen, bis man den Richtigen hat!"

Weil:

Der Computer hat <u>keinen "Überblick"</u>, er kann <u>nicht "alle auf einmal"</u> anschauen, sondern <u>immer nur zwei Sachen</u> miteinander vergleichen!

==> Zeichen für Zeichen, Name für Name!

Was ist daran schwer?

"Einfach <u>alle</u> der Reihe nach durchsuchen, bis man den Richtigen hat!"

Annahmen:

- 2,5 Milliarden Namen mit im Mittel 10 Zeichen
- Alle Namen haben gleichzeitig im RAM Platz
 - Braucht <u>viele GB</u> RAM!
 - Platte/SSD wäre <u>viel langsamer & komplizierter</u>
- Prozessor mit <u>4 Ghz Takt</u>

Was ist daran schwer?

"Einfach <u>alle</u> der Reihe nach durchsuchen, bis man den Richtigen hat!"

Ganz grob:

Vergleich braucht <u>10 Takte pro Zeichen</u>

- ==> 100 Takte pro Namen (10 Zeichen)
- ==> 25 Nano-Sekunden pro Namen (4 000 000 000 Takte/Sek, d.h. 1 Takt = 0,25 Nano-Sek)
- ==> <u>62,5 Sekunden</u> für 2 500 000 000 Namen!!!

Muss man wirklich alle anschauen???

Bei "zufälliger Reihenfolge" der Namen:

• Namen vorhanden:

Man findet den Namen im Mittel nach der *Hälfte* aller Namen

==> Immer noch zu langsam!

• Namen *nicht* vorhanden:

Das kann man erst dann sagen, wenn man <u>alle</u> Namen angeschaut hat!

Kann man "cleverer" suchen?

In einem "Saustall":

Nein!

Auch ein Computer kann nicht "zaubern"...

Kann man "cleverer" suchen?

In einem "Saustall":

Nein!

Auch ein Computer kann nicht "zaubern"...

Aber:

Ordnung hilft ja angeblich beim Suchen!

Was heißt "Ordnung"?

Ordnung = Sortierung

bei uns:

• ... nach Name alphabetisch

in anderen Fällen:

- ... nach Artikel<u>nummer</u>,
 Versicherungs<u>nummer</u>,
 Konto<u>nummer</u>, ...
- ... nach <u>Datum</u>

Was bringt Ordnung?

Für die "dumme" Suche (einfach <u>der Reihe nach</u> durchschauen):

(Fast) nichts!

(nur der Fall "nicht vorhanden" wird doppelt so schnell)

Was bringt Ordnung?

Für die *"dumme" Suche* (einfach <u>der Reihe nach</u> durchschauen):

(Fast) nichts!

(nur der Fall "nicht vorhanden" wird doppelt so schnell)

Aber wenn die Daten sortiert sind:

Jetzt kann man "<u>cleverer</u>" suchen! Wie???

"Divide et impera"!

"Teile und herrsche!"

Der Trick heißt

"binäre" Suche

"binär" hat etwas mit "zwei" zu tun...

"Divide et impera"!

... also immer wieder

<u>zweiteilen</u>:

In der richtigen <u>Hälfte</u>, im richtigen <u>Viertel</u>, im richtigen <u>Achtel</u> usw. weitersuchen, bis

- der Name gefunden ist
- oder <u>nichts mehr übrig</u> ist (dann gibt es den Namen nicht!)

"Divide et impera"!

Aber was ist die "richtige" Hälfte?

Den Namen <u>in der Mitte</u> des zu durchsuchenden Teils mit dem gesuchten Namen vergleichen

- Mitte ist *gleich* gesuchtem Namen: Fertig!
- Mitte ist kleiner als der gesuchte Name:
 Gesuchter Name muss in rechter Hälfte sein!
- Mitte ist größer als der gesuchte Name:
 Gesuchter Name muss in linker Hälfte sein!

Was bringt "Hirn" & "Ordnung"?

Mit jedem <u>einzelnen Vergleich mehr</u> kann man <u>doppelt so viele + 1 Namen</u> durchsuchen!

Vergleiche	reichen für Namen!
1	1
2	3
3	7
4	15
5	31
6	63
10	1023
20	1048575
30	1073741823

Was bringt "Hirn" & "Ordnung"?

Für <u>2,5 Milliarden Facebook-Benutzer</u> reichen

32 Vergleiche,

um den richtigen zu finden!

<u>800 Nano-Sekunden</u> statt 1 Minute, daher über <u>75 Millionen Mal schneller!</u>

Alles bestens?

Leider noch nicht:

So wie sich das Kinderzimmer nicht von selbst aufräumt...

... sortieren sich auch die Daten nicht "von selbst"!

1.) Die Kinder kommen <u>einzeln</u> und <u>in zufälliger Reihenfolge</u>:

- 1.) Die Kinder kommen <u>einzeln</u> und <u>in zufälliger Reihenfolge</u>:
 - Jeder sucht sich <u>von hinten</u> der Reihe nach den <u>richtigen</u> Platz
 - Alle größeren Namen rutschen 1 Platz nach hinten

"Sortieren durch <u>Einfügen</u>"

2.) Die Kinder sind schon <u>alle da</u>, aber stehen auf einen Haufen <u>durcheinander</u>:

- 2.) Die Kinder sind schon <u>alle da</u>, aber stehen auf einen Haufen <u>durcheinander</u>:
 - Der Lehrer sucht der Reihe nach aus allen den *ersten Namen*, den *zweiten Namen*, usw.
 - Jeder Ausgesuchte stellt sich <u>hinten</u> in die Reihe, keiner muss nachrutschen

"Sortieren durch <u>Auswählen</u>"

3.) Die Kinder stehen schon <u>durcheinander in einer Reihe</u>, jeder sieht <u>nur seine beiden Nachbarn</u>:

3.) Die Kinder stehen schon durcheinander in einer Reihe:

- Der Lehrer geht immer wieder von links nach rechts durch die ganze Reihe
- Wenn zwei Nachbarn "<u>falsch</u>" stehen, wird <u>Platz getauscht</u>
- ... bis alles stimmt (ein Durchgang ohne Tauschen)

"Sortieren durch <u>Vertauschen"</u>

Klappt das auch im Computer?

Eigentlich ja, aber

alle 3 Sortierverfahren brauchen für <u>2.500.000.000 Namen</u> in etwa ...

Klappt das auch im Computer?

Eigentlich ja, aber

alle 3 Sortierverfahren brauchen für <u>2.500.000.000 Namen</u> in etwa ...

2.500.000.000 * 2.500.000.000 / 2

Vergleiche!!!

Das wären <u>78.125.000.000 Sekunden</u> oder rund <u>2.500 Jahre</u>!

Hoffnung Nummer 1

Wenn man bei 2.500.000.000 Namen einen Namen <u>mit 32 Vergleichen suchen</u> kann, sollte man auch

mit <u>32 Vergleichen</u> den <u>richtigen Platz</u> für <u>einen</u> einzelnen Namen

finden können!

Das wären <u>80.000.000.000 Vergleiche</u> für 2.500.000.000 Namen (oder gut 30 Minuten...)

Hoffnung Nummer 2

Hilft

"teile und herrsche"

auch beim Sortieren?

==> Wie könnte man <u>teilen</u>???

Sortieren durch Teilen...

- Einen Namen <u>zufällig</u> auswählen (hoffentlich erwischt man einen "mittelgroßen" Namen, sonst werden die Hälften recht ungleich!), ...
- ... alle <u>kleineren Namen links davon</u> und alle <u>größeren Namen rechts davon</u> hinstellen (irgendwie, unsortiert), ...
- ... und jede Hälfte wieder genauso weiter aufteilen...
- ... bis jede "Gruppe" nur mehr <u>einen</u> Namen groß ist

Jetzt wären wir berühmt ...

... wenn wir das <u>vor über 50 Jahren</u> erfunden hätten:

"Quicksort"

(Tony Hoare, 1960, wurde Professor an der Universität Oxford und Chef eines Microsoft-Forschungslabors)

Heute das häufigste Sortierverfahren

... und wirklich so schnell wie erhofft!

Die Wissenschaft hat jedenfalls bewiesen:

Es ist <u>unmöglich</u>, deutlich schneller zu sortieren!

Aber jetzt ist alles bestens...

... oder doch nicht???

Aber jetzt ist alles bestens...

... oder doch nicht???

Was ist, wenn sich die Daten <u>oft ändern?</u>

Jedesmal, wenn einer dazukommt / wegfällt:

Aber jetzt ist alles bestens...

... oder doch nicht???

Was ist, wenn sich die Daten <u>oft ändern</u>?

Jedesmal, wenn einer dazukommt / wegfällt:

Alle dahinter um eins verschieben!

Bei Facebook:

Jedesmal ~1.250 Millionen Benutzer umkopieren!

Viel zu aufwändig, dauert auch <u>Minuten!!!</u>

"Brief ans Christkind"

- Ich möchte <u>neue Namen</u> speichern können, wo gerade Platz ist, ganz <u>durcheinander!</u>
- Ich möchte Namen einfach weglöschen können, auch wenn dadurch Löcher in meiner Liste entstehen.
- Ich möchte aber trotzdem binär suchen können!
- Und ich will auch eine <u>sortierte Liste aller Namen</u> ausdrucken können!
- Und das alles <u>ohne</u> jemals alle Daten zu <u>sortieren</u> oder zu <u>verschieben</u>!

"Binär suchen" braucht ...

... für jeden Namen

... nur den <u>mittleren</u> Namen des <u>Teils links</u> davon

... und den <u>mittleren</u> Namen des <u>Teils rechts</u> davon!

Trick: "Hausnummern"

- 1.) <u>Jeder Speicherplatz</u> bekommt eine **eindeutige "Hausnummer"**
- 2.) <u>Bei jedem Namen</u> speichern wir <u>zwei Hausnummern</u> anderer Namen:

Wo "wohnt" der mittlere Name seines <u>linken</u> Teils und seines <u>rechten</u> Teils?

3.) Wenn es links oder rechts von einem Namen keinen Teil (keine Namen) mehr gibt, tragen wir "O" als Hausnummer für den leeren Teil ein.

Informatiker sind komische Leute...

So eine Anordnung von Daten heißt

Baum

genauer "binärer Suchbaum".

- Für jeden Namen gilt:
 - <u>Alle kleineren</u> Namen "hängen" <u>links</u> an ihm dran, alle <u>größeren rechts</u>.
- Gezeichnet werden Bäume meist mit der "<u>Wurzel</u>" (= mittlerer Namen) <u>oben</u>, Wuchsrichtung nach unten!

... und sie klauen Ideen gerne

Bäume gibt es in <u>vielen Varianten</u>, und sie stecken in fast jedem Programm, das große Datenmengen speichert und <u>durchsucht!</u> (z.B. auch in allen *Datenbanken*)

"The end"

Fragen?