

Domain-Driven
Design

Klaus Kusche, May 2013

Contents

● What is DDD?
● Central Concepts of DDD:

Domain, language & model
● DDD & software project management
● Designing code with DDD

... at the project level

... at the level of classes

DDD history & sources

● “The book”:

Eric Evans (Addison-Wesley, 2003):
“Domain-Driven Design:
Tackling Complexity in the Heart of Software”

● Compact summary of “the book”:

Abel Avram, Floyd Marinescu (InfoQ, 2006):
“Domain-Driven Design Quickly”

Online / freely downloadable PDF!

● http://dddcommunity.org

DDD is ...

“Domain-driven design is
not a technology or a methodology.

It is a way of thinking and a set of priorities,
aimed at accelerating software projects
that have to deal with complicated domains.”

http://dddcommunity.org/learning-ddd/what_is_ddd/

DDD includes ...

● ... principles to

design the code

(technically)

● ... principles to

manage the development

(organizationally)

SW structure defined by DDD

Clearly separated layers:

● Presentation layer = User interface

● Application layer
= Coordination, client session management, ...

No business data or business logic! ==> Thin!

● Domain layer = Business data and logic

DDD is for this layer only!

● Infrastructure layer
= Communication (Network), Persistence (DB), ...

Application areas for DDD

● DDD is best suited for software projects with

complex business logic or workflow

● DDD is not suited

● ... for data-centric projects with little logic
● ... for designing and describing user interfaces

● DDD does not care

● ... about data persistency (i.e. databases) and I/O
(that's “hidden” in repository classes, see later)

● ... about infrastructure (e.g. networking, ...)
● ... about the user interface

What does “Domain” mean?

“Domain” in DDD: Not its technical meaning!

“Domain”
=

Business / Activity / Knowledge
of the user / customer

(German: “Anwendungsbereich”,
“Fachgebiet”, “Geschäftsfeld”)

DDD goals (1)

Common observation:

If the problem isn't understood,
the solution won't make users happy.

Remedy:

Avoid the user / developer gap
in understanding what

the software is expected to do!

==> Meet the customer's needs & expectations!

“I know you believe
that you understand
what you think I said,

but I am not sure
if you realize

that what you heard
is not what I meant ...”

DDD's central concept

User's Knowledge & Problem

--> Language to express it

--> Model representing it

--> Implementation

The main effort in DDD goes into

understanding and modelling
(by those who actually implement it!)

what the user is doing.

The language (1)

Define a common, “ubiquitous language”

understood by both sides

==> Business (user) terms, not technical terms!

Write it down (“Glossary” of terms used)

and strictly adhere to it:

● In all discussions and communications

● In all documents

● In the code (class names, ...)

The language (2)

Double-check for each language term defined:

● Domain expert:

- Do I understand it?

- Does its definition say what I think?

- Can I clearly express my problem with it?

● Developer:

- Is it unambiguous / consistent /
well-defined / complete / ... ?

- Can I write code for it?

The model (1)

Reality =
Objects / Values

& their Actions / Behaviour / Operations

Model =
Description / Abstraction of the reality

The model is for a specific purpose: To solve a problem!

==> Drop irrelevant or unimportant things

==> Describe relevant things exactly & in detail

The model (2)

Differing from “classic” approaches,

the model is not “internal” to the development,
but created in collaboration with the customer!

==> The model must be

readable & understandable for the customer!

Avoid:

● Technical terms & concepts: Reality isn't talking SQL!

● Anything related to the user interface:
- Don't describe data or actions based on their UI
- DDD isn't for defining UI's

The model (3)

What does the model represent?

Roughly

● Object-Relation-Diagrams with methods

● similar to UML

But:

Use any format which is easily understood:

● Plain text, hypertext, ...

● Free-hand drawings, UML, other diagrams

● Even documented code (e.g. Javadoc) is ok!

DDD & SW project management

DDD by itself is

not a software project
management methodology

but it requires some

agile software development process
It goes well with

Scrum, Extreme Programming, ...

It won't work with
Waterfall or spiral model, german “V-Modell”, ...

The “agile manifesto”

“... we have come to value:

● Individuals and interactions
over processes and tools

● Working software
over comprehensive documentation

● Customer collaboration
over contract negotiation

● Responding to change
over following a plan”

==> Interact and iterate!

Agile principles in DDD (1)

Interaction:

● Direct and frequent discussion

● ... during the whole project lifetime

● ... between the “domain experts”
of the customer
(not the managers / lawyers, not the average users)

● ... and all developers!

==> If you have no direct access to the domain experts,

DDD is not the way to go!!!

Agile principles in DDD (2)

Iteration:

Language and model evolve during implementation:
- Unclear, things missing?
- Hard to implement, too slow, ...?
- Good ideas for restructuring?

==> Immediately rediscuss with the domain experts!

==> Extend or adapt language, model & code!

At any time, language, model & code
must match each other exactly!

==> Continuously update them synchonously!

Agile principles in DDD (3)

Continuous refinement & refactoring requires

continuous integration
of all developments:

● Merge daily, build daily, test daily!
● Automatic unit tests

are highly recommended!

Agile principles in DDD (4)

Others:

● There are just “developers”,
no dedicated “analysts”, “designers” or “architects”:

The developer must understand the user's needs!

● There are no phases
(like specification, design, implementation, test, ...)

==> Implement and test early!

● There are no formal requirements,
no required documents, no milestones, ...
(no “Lastenheft” or “Pflichtenheft”, just the model)

DDD goals (2)

“Master the complexity”

● Make large (business) software projects
with complex business logic manageable

● Produce correct, understandable & maintainable code
within time & budget

● Avoid the “big ball of mud”!

DDD is based on ...

● Object-oriented principles

==> Language independent,

but suitable only for O-O languages
(Java, C#, some “web” languages)

==> “Plain” Java / C# / ... suffices,

no special framework required

● Some O-O patterns of the “Gang of Four”
(Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides:
“Design Patterns. Elements of Reusable Object-Oriented Software”)

==> Experienced O-O programmers required!

Designing code with DDD

Two different, independent levels:

● Designing the interaction between “Bounded Contexts”

● Designing the classes within one “Bounded Context”

Each “Bounded Context” corresponds to

one subproject
==> One separate team,

separate discussions with domain experts

==> One separate language & model

(Example: Parcel distribution:
Logistics, billing / finance, customer care, statistics, ...)

The “big picture”

● The “Context map” describes
the “contact points” between Bounded Contexts
and their interaction / relation.

● DDD lists six typical patterns of interaction:
Shared kernel, customer / supplier, separate ways,
conformist, open host service, anticorruption layer

● In most cases, the innards are hidden:
Bounded contexts do not share objects directly!

==> Each context is a separate application or process
==> They likely communicate by messages
==> This leads to a service-oriented architecture

Designing classes

Categorize and refactor the classes in the initial model:

● Entities: Objects with unique identity

● Value Objects: Values without identity

● Aggregates: Combine Entities and Value Objects

● Factories: Generate new complex Aggregates

● Repositories: Store Aggregates persistently

● Services: Functionality not belonging to objects

● Modules: Structure the model

● + some GoF design patterns: Specification, strategy, ...

Entities and Value Objects

Entities (e.g. person, parcel, truck, bank account, ...):

● Have a unique and persistent identity

● Have state and a well-defined lifecycle

● Have behaviour (methods)

Value Objects (e.g. color, postal address, ...):

● Only represent values / properties

● Don't have a unique identity nor state or lifecycle

● Are immutable (read-only)
==> Can be copied & destroyed at will

Aggregates

... combine Entities and Value Objects
which belong together

Example:

Parcel + pack list + route + ...

Quick check:

If a cascading delete is required,
the objects affected should perhaps

be combined into an aggregate!

The “aggregate root”

... is the “topmost” entity, representing the aggregate

... “owns” all other objects in the aggregate

... is the object giving the aggregate its identity

... is the only object whose reference (identity)
should be visible & stored outside the aggregate

... is the only object (“single point of access”)
whose methods can be called directly from the outside

==> Aggregates

... are visibility / identity borders for their subobjects

... protect their innards from direct access

Repositories = Object stores

● 1 Repository = Abstract collection of all objects
of a certain Aggregate class (including subobjects)

● (Virtually) “in memory”:
The model assumes infinite and persistent memory

● “Flat” (no specific data organization or index),
but with powerful search functionalities

● Repositories hide persistence (permanent storage)
and search / access mechanisms
(Database / SQL, Filesystem, ...):
Modelled only by functionality / interface!

● Typical operations: add, remove, find, list

Services

DDD prefers “fat” object classes, not “anemic” ones

==> most “simple” operations should be defined
in Entity / Value Object / Aggregate classes!

Separate Service classes are intended only for

● Operations which don't fit well elsewhere

● Operations which are highly complex

● Operations involving multiple independent objects

Examples: “Calculate route”, “Move parcel”

Service classes are stateless (have no data of their own)

“The end”

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

